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Much of the theory and analysis for computations on the sphere can be
best understood in the context of comparable computations in Cartesian
geometry where Fourier theory and analysis are applicable. In addition,
Fourier analysis is part of harmonic analysis.

Therefore we begin our study of spherical computations with a review Fourier
analysis, which facilitates the understanding of comparable topics in spherical
geometry.
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SPECTRAL ACCURACY

Given f(#) on the interval [0, 27] and define

1 son 1 ron .
an=—["" f(8) cosnbdd ; b, = ;/0 f(6)sinnbdd (1)
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then for piecewise smooth f(z)

1 L
f(z) = —ap + lim ) (aycosné + b, sinnh) (2)
2 —00 7]
From a computational viewpoint the rate of convergence is fun-
damental. Integrating by parts:

4 = —% ™" 1'(6) sinnéde (3)
by, = i[f(O) — f2m)] + %/OZF f'(0) cosnfdd .  (4)
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If f()(9) is continuous and periodic then repeated integration
by parts yields kth order algebraic convergence.
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If all derivatives are continuous and periodic then a, and b,
must decrease faster than any inverse power of n (say Ce™).
This attribute is called spectral accuracy, which in practice is
rarely, if ever, achieved.
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NONPERIODIC FUNCTIONS

Assume we have a very smooth function that is not periodic.
For example f(z) = z on the interval [0, 27]

The trigonometric series representation is periodic and therefore
converges to a periodic “sawtooth” or discontinuous function.

The rate of convergence [O(n™!)] is determined by the “saw-
tooth” periodic function and not by the smooth f(z) = =.

A thousand terms could be required to obtain 3 digits of accu-
racy and then only in double precision.

Under such circumstances spectral accuracy can still be obtained
by switching to Chebyshev polynomials, for which a fast trans-
form also exists.

Good Fourier theory reference

Georgi P. Tolstov, Fourier Series, Dover, New York,
ISBN 0-486-63317-9

Good Chebyshev reference

Gottlieb and Orszag, Numerical Analysis of Spectral Methods,
SIAM, Philadelphia, 1977.



DISCRETE TRIGONOMETRIC
SERIES REPRESENTATIONS

Assume we are given a tabulation f; on a set of N equally
spaced points z;. The purpose of discrete Fourier analysis is
to find a continuous approximation f(z) to f(z), which is un-
known except at the points z; where f(z;) = f;. Then, one can
approximate derivatives, integrals or any operation by formal
application to the continuous trigonometric representation.

That is, we wish to determine coefficients a,, and b,, such that

¢ L —a . T —a
f(z) = ngo[anCOSQWnb_ " —|—bnsm2ﬂ'nb —

] (6)

satisfies f(z;) = f;.

What is L?
Define 6z = (b — a)/N, then at the points z; = jéx + a, j =
0,1,...,N —1.

L 27 . 27
fi= ngo[an Cos 1 + b, smnjﬁ] (7)
L is equal to the number of independent trigonometric functions
that can be defined on the N points z;.



THE DISCRETE TRIGONOMETRIC
BASIS AND ALIASING

Trigonometric aliases:

N, 2m N 2w N 2m

Ny2m v (Y T N | 2r
cos(n + 5 )]N cos| (2 n)]]N cos( 5 n)]N (8)
: N, 27 | N 2 . N 2
sm(n—l—;)jﬁ—sm[N—(E—n)]]ﬁ——sm(;—n)jﬁ (9)

Any trig function corresponding to m > N/2 is identical (on the
points) to one corresponding to m < N/2. That is, any function
with m > N/2 has an alternate representation (or alias) in terms
of one with m < N/2.

Therefore if we set L = N/2 the resulting discrete trigonometric
basis includes all distinct trigonometric functions on the set of
pointsj%“ forj=0,...,N —1.

The number of points z; is equal to the number of coefficients
Gy, by, which implies that the interpolation problem has a solu-
tion.

This is VERY different from harmonic analysis on the sphere
where the number of basis functions is half the number of points
on the sphere and the interpolation problem does not necessarily
have a solution.



TRIGONOMETRIC INTERPOLATION

Now that the discrete set of basis functions is defined it remains
only to compute the coefficients a,, b,.

Given f; then a, and b, are computed from the following discrete
approximations to their integral representations

1 N1 2 1
ijcosnj—7r : bn:N

N—-1 27'('
TN & N ]-Zzo fisinnjzr - (10)

Rectangle rule (ordinarily inaccurate) is best possible for smooth
periodic functions and provides spectral accuracy.

The resulting trigonometric representation is identical to f; on
Zj:

. 1 N/2 _ _
f(z) = zao+ Y (ay,cos 2N + by sin 27n a) (11)
2 n=1 b—a —a

IMPORTANT

The computed coefficients (?7) have period N whereas the the
exact coefficients trail off to zero.

Therefore the computed coefficients will likely have 100% rela-
tive error near n = N/2



INTERPOLATION ERROR

To examine interpolation error we artificially chose an “exact”
function f(#) with 2V terms in its series representation, which
is double the number of functions in the discrete basis.

This simplifies exposition and makes evident the error in a,, and
b, for any f(0). At 6; the exact function is then

N

2 2
£(8;) = 3 [an cos nj— + b, sin nj—

> ~ <1 (12)

Recall that on a discrete set of N points, wave numbers (N/2+n)
are indistinguishable from numbers (N/2 — n), consequently

N/2-1 9 -
f8;) = > [(ant+an—n) cosnjﬁ-i—(bn—b]v_n) sinnjﬁ]. (13)

n=0

Therefore instead of computing a, and b, a discrete Fourier
analysis yields

4, = a, +ax_, and b, =b, —by_, (14)

Thus the error is "reflective” about n = N/2. For general f(6)
the error also “reflects” about n = 0, then again about n =
N/2 and so forth. The sum total of these reflections is the
interpolation error.



INTERPOLATION ERROR
observations

. For general f(6), L = oo and the error is the sum of an
infinite number of coefficients that alias onto the interval
n < N/2.

. The error is a ”reflection” of the a, about the maximum
wave number N/2. Hence the error in ay/2—1 is at least
an/2+1, which is likely comparable in magnitude and can
induce 100% error.

. The major source of numerical error in spectral models oc-
curs with the differentiation of the trigonometric represen-
tation with coeflicients nay/2,1, which define the error in
the derivative.

. A wuseful trick here is to decrement the magnitude of the
coefficients by the roundoff or other acceptable error.



INTERPOLATION ERROR
(continued)

5. If f(6) and its derivatives are smooth then spectral accu-
racy dictates that a, and b, decrease exponentially. How-
ever the computed coeflicients never decrease below trun-
cation or roundoff error which is then multiplied by n when
computing the approximate derivative of f(6).

6. If f(6) is not periodic, i.e. f(0) # f(27) then its Fourier
representation is discontinuous at the endpoints and the
convergence of a, is very slow O(n™1) which is unaccept-

able.

7. The bottom line is that one does not even obtain the first
N/2 coefficients a,, and b,, but rather the sum of all coeffi-
cients whose trig functions alias to wave number n.



ALIAS CONTROL

PDEs that model geophysical processes usually have nonlinear
product (quadratic) terms such as f(8)g(6) or f(6)g'(0).

On N points trigonometric representations are limited to N/2
wave numbers. However the quadratic terms have N wave num-
bers so that half the coefficients will alias to the lower wave
numbers.

If the decision is made to truncate all trig representations to
N/4 wave numbers then the coefficients in the product terms
can be computed exactly without aliasing.

The product term is then truncated from N/2 to N/4 wave
numbers in agreement with the decision to limit all trig repre-
sentations to IN/4 wave numbers. In this manner alias error can
be eliminated. Of course truncation error remains.

The truncation error provides an estimate of the interpolation
error.

Spectral accuracy is maintained only if the resolution includes
high order coefficents that are decreasing spectrally.
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THE TWO-THIRDS RULE

The “reflective” aspect of aliasing implies that the coeflicients
ay, b, are computed without aliasing for n < N/2 — m if a,, =
b, = 0 for n > N/2 + m. This observation leads to the two-
thirds rule that increases the spectral resolution relative to the
proceedure on the previous slide.

The reflective aspect of trigonometric aliasing permits the in-
crease in the number of wave numbers from N/4 to N/3 without
introducing any alias error in the coefficients.

The resolution in spectral space is then two-thirds the resolution
in physical space and alias error is eliminated.

NOTE

On the sphere the two-thirds rule does not work for equally
spaced latitudinal points because harmonics beyond the discrete
basis alias onto all of the basis functions. That is, aliasing is not
“reflective”.
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SUBROUTINE EZFFT

The good news is that given f; the coefficients a,, and b,, can be
computed using FFTPACK. In particular the EZFFT programs are
simple to use but not quite as fast as the RFFT programs.

SUBROUTINE EZFFTF (N,F,AZERO,A,B,WSAVE)

The array WSAVE must be initialized by
SUBROUTINE EZFFTI (N,WSAVE)

The sequence f; can be reconstructed from a,, and b,, by calling
the backward transform or Fourier synthesis:

SUBROUTINE EZFFTB (N,F,AZERO,A,B,WSAVE)

AZERO= ag, A(n) = ay, B(n) = b, F(j) = f;. The coefficients
satisfy

N/2 2 2
f] = ap + Z (an COS n]—ﬂ- + bn sin n]—ﬂ-) (15)
n=1 N N

However the derivatives, integrals, etc. must be computed from
the continuous form:

N/2

f(z) =ap+ Y (ancos o — % 4 by, sin 27n
n=0 b—a —a

r—a

) (16)

This answers the most often asked question; namely, What do I
do with the A’s and B’s and how are they scaled?
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HINTS FOR USING EZFFT

Consider now the following hints for using subroutines EZFFTI,
EZFFTF, and EZFFTB from FFTPACK. Basically it is a compila-
tion of questions that have been asked over many years. It also
provides hints for the other programs in FFTPACK.

1. When sampling periodic data, any sequence of N points
may correspond to a phase shift of the set fy, ..., f;v_1 and
consequently the coefficients a,, and by, computed by EZFFTF
may differ from a,, and b,, where f; is always assumed to
be at the origin z = a.

2. Unlike the other transforms in FFTPACK, the EZFFT pro-
grams scale the coefficients, but at some additional cost
compared to the RFFT programs.

3. It is conventional for FFT software to avoid entering redun-
dant data and therefore fy = fj is not included in the F
array. Rather only fo, ..., fv—1

4. Subroutine EZFFTI initializes the WSAVE array for subse-
quent repeated use by EZFFTF and EZFFTB. It is called only
once unless different values of N are used in which case
different WSAVE arrays must be used.

13



HINTS FOR USING EZFFT
(continued)

5. Note the summation limits and the range of indices. The F

array contains (fp, ..., fn—1). AZERO contains ag. For even
N, A contains (ay, . .., ay/) and B contains (by, ..., by/a—1).
For odd N, A contains (ai,...,a-1)2) and B contains

(b1, - -5 bv—1)/2)-

6. A rough estimate of the error in the trigonometric interpo-
lation is given by the magnitude of the coefficients a,, and
b, for n near N/2. If they remain large, even as N is in-
creased, it is likely that f(6) or some low order derivative
is discontinuous OR fy has been included in the array F.

7. Where possible N should be selected as a product of small
primes, preferably 2, 3, and 5. Otherwise the FFT can be
quite inefficient. In the unlikely event IV is restricted to a
large prime then Bluestein’s FFT should be used.

8. Do not pad a sequence with zeros because it then becomes
discontinuous function whose spectral coefficients converge
quite slowly and could therefore obscure the coefficients of
f(8) which might converge much faster.

W. L. Briggs, P. N. Swarztrauber, R. A. Sweet, V. E. Henson,
and J. Otto, Bluestein’s FF'T for arbitrary N on the hypercube,
Parallel Computing, 17(1991), pp. 607-617
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STAGGERED GRIDS
(PHASE SHIFTING)

Say we wish to interpolate to the center of the grid system or
equivalently assume the model is posed on a staggered grid sys-

tem.

N/2
fjH/Q_Z(ancosn(j—i—l/Z) +b smn(j—|—1/2) ) (17)

n=0
or

N/2A 2T L. 2

= X fancosng ) + by sinng ) (18)
where
5 T fbysinn— ; b inn— + b .
= a, COSN— sinn— ; = —a, sinn— cosn— .
(n = Gn COST + bpsinnr 5 by Qp SN + by COS T

(19)
Therefore to obtain the coefficients for the shifted function one
computes the unshifted coefficients a,,, b, and then computes
the shifted coefficients a,, and b,. f;11/2 can then be tabulated
by calling EZFFTB.
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THE DISCRETE COMPLEX
FOURIER TRANSFORM (DFT)

The complex DFT is most frequently written as

1 N-1 . omi
cn:N.ije_J"T n=0,...,N—1. (20)
J:
With inverse
N_l . 27
fi=> e | 3=0,...,N-1 (21)
n=0

However this is an aliased form that is not suitable for differen-
tiation etc. The nonaliased form is

N/2 o N/271 o 2mi
fi=Y v+ > en_pe "V (22)
n=0 n=1

With e/ replaced by e2™"i= , this form is suitable for differen-
tiation, interpolation, etc. because it contains the discrete basis
with the smallest wave numbers n. The aliased forms provide
the most convenient notation for algorithmic development.
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THE RELATIONSHIP BETWEEN THE
REAL AND COMPLEX TRANSFORMS

If f; is real then replacing n with n — N in the conjugate of the
DFT yields

N-1 , .
eNen = — . [N — ¢ (23)
7=0

Substituting into the nonaliased form we obtain

N/ . 2w .. 2m -
fi=rco+ nz—:o [Re(cn) CO8 jnr — Im(c,,) smjnﬁ] + (—=1)’ceny2

(24)
Therefore the real trigonometric representation is related to the
complex transform by

a, = Re(c,) and b, = —Im(c,). (25)

In this manner the complex FFT can be used to transform real
sequences; however, most packages contain FFTs specifically for
real sequences that are about twice as fast. e.g. EZFFT and RFFT
in FFTPACK.

17



THE FAST FOURIER TRANSFORM

Separating even and odd indices, the DFT can be written

N/2-1 b N/2-1 o
=Y. foe N + fojare MR (26)
i=0 =0
If we define
N/2-1 o Nj2—-1 s
dn= Y foje "2 5 gy= > fojp1e "N (27)
=0 i=0
then

27i 27i

cn =dy + e_nTQn 7 CpntNj2 = d, — e_nTgn (28)

1. First compute d, and g, and then c¢,, which requires the
computation of two transforms of length N/2 or 2(N/2)?
operations, which is half the operations required by (77).

2. However d,, and g, have the same form as ¢, but with N
replaced with N/2. Hence they can also benefit from the
splitting algorithm to produce four DFTs of length N/4.

3. The recursive application of the splitting algorithm to suc-
cessively shorter sequences yields the FFT, which requires
5N log, N real floating point operations.

18



MULTIPROCESSOR FFTS

If N has factors N = NyN; then by using the standard index
maps
n=i+jNy ; k=I1l+mN (29)

we can define the two-dimensional arrays

fij = fa i=0,..,No—1; j=0,..,N—1 (30)
Clm = Ck l:O,...,Nl—l ; m:()’__.7N0_1 (31)

which when substituted into the DFT

cr = Z foe R (32)
yields
No—1 )
Clm = W?\Trﬁwfv 2 fz,JWM (33)
i=0

where wy = e~ . Therefore ci,m, and hence cg, can be com-
puted as two multiple transforms. First, Ny transforms of length
N; (multiplied by w%) can be computed simultaneously from

o , N
Cil —WN Z fz,Jle (34)
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MULTIPROCESSOR FFTS
(continued)

Next, Nj transforms of length Ny can be computed simultane-
ously from

No—1
2 1)
Cfn?z = Zo cz(,l)w%?;' (35)
1=

In practice this algorithm distributes well; however, an ordered
transform requires three transpositions that can dominate com-
pute time.

Years were spent parallelizing computations like above but in
practice, communication dominates compute time.

P, N, Swarztrauber, Multiprocessor FFTs, Parallel Computing,
5(1987), pp. 197-210.

P. N. Swarztrauber, Transposing arrays on multicomputers us-
ing de Bruijn sequences, J. Parallel Distrib. Comput., 53(1998)
pp. 63-77.

P. N. Swarztrauber and S. W. Hammond, A comparison of op-
timal FFTs on torus and hypercube multicomputers, Parallel

Comput., 27(2001) pp. 847-859.
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SYMMETRIC FFTS

If the sequence f; has some symmetry (real, sine, cosine, etc)
then compute time can be reduced using special FFTs. Each
symmetry cuts compute time in half, e.g. a real odd sequence
can be transformed in a quarter of the time required by the
complex FFT.

There are two kinds of symmetric transforms:

Algorithmic restructuring

The FFT itself is modified, e.g. the real FFT is developed by
computing only half of the coefficients at each stage of the com-
plex FFT because the other half are given by c¢y_,, = ¢,. Sounds
simple but a real pain to implement. Yet even more difficult are
algorithms for odd, even, and odd, even quarter wave trans-
forms.

P. N. Swarztrauber, Symmetric FFTs, Math. Comp., B47(1986),
pp. 323-346.

Pre and postprocessing

The symmetric sequence is preprocessed before calling the real
FFT and postprocessed to extract the desired coefficients.
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SYMMETRIC FFTS
(continued)

As an example consider the pre and postprocessing FFT of an
odd sequence

N/2-1 2
fi= Y o sinni— . (36)
n=1 N

First we preprocess the sequence f; by computing a new se-
quence e;

1

e = §(fi — fnje—i) + Sin’i%r(fi + fayja—i) - (37)

Substituting trig representation for f; we obtain

N/4-1 A . Arm i
ei = at X [(cani—can—1) cosnirtepn sinni—r]—=(=1) by -
n=1

(38)
Therefore e; is a real periodic sequence with coefficients a,, and
b, that can be determined by a real transform.

Postprocessing then consists of computing

Cop = bn ; Cop4+1 = Cop—1 + Gy (39)

With this approach the transform of an odd sequence requires
about the same time as a real sequence with N/2 elements or
half the time required to extend to an odd periodic function and

use the real FFT.
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THE FAST FRACTIONAL FOURIER TRANSFORM

D. H. Bailey and P. N. Swarztrauber, Fast fractional Fourier
transforms and applications, STAM Rev.,33(1991), pp. 389-404.

Differs from the traditional DFT by the introduction of an arbi-
trary real parameter « in the exponent. The sampling interval
can be different from the period of the data.

1 N-1
Cn = NZ e M —=0,...,N—1. (40)

e The FFFT was developed for the SETI project because it
can lock onto a signal of varying frequency....

e It can also be used to identify lines (buildings) in a digitized
video image.

e Computing segments of the DFT of a sparse sequence.

e Computing the DFT of a sequence whose length is a prime
number (or any other size that is ill-suited for ordinary

FFTs).
e Analyzing sequences with non-integer periodic components.

e Performing high-resolution trigonometric interpolation.

Facilitates computation of the Laplace transform.

D. H. Bailey and P. N. Swarztrauber, A fast method for the
numerical evaluation of continuous Fourier and Laplace trans-
forms, SIAM J. Sci. Compt., 15(1994), pp. 1105-1110.
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FFTPACK

The good news is that the sine, cosine, and the quarterwave
transforms have been implemented in FFTPACK.

10.

11.
12.
13.

14.
15.
16.

RFFTI
RFFTF
RFFTB

EZFFTI
EZFFTF
EZFFTB

SINTI
SINT

COSTI
COST

SINQI
SINQF
SINQB

COSQI
COSQF
COSQB

initialize RFFTF and RFFTB
forward transform of a real periodic sequence
backward transform of a real coefficient array

initialize EZFFTF and EZFFTB
a simplified real periodic forward transform
a simplified real periodic backward transform

initialize SINT
sine transform of a real odd sequence

initialize COST
cosine transform of a real even sequence

initialize SINQF and SINQB
forward sine transform with odd wave numbers
unnormalized inverse of SINQF

initialize COSQF and COSQB

forward cosine transform with odd wave numbers
unnormalized inverse of COSQF
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FFTPACK

(continued)
17. CFFTI initialize CFFTF and CFFTB
18. CFFTF forward transform of a complex periodic sequence
19. CFFTB unnormalized inverse of CFFTF

FFTPACK is available via anonymous ftp by executing the com-
mand

ftp ftp.ucar.edu

Then enter “anonymous” for your name, and your email address
for the password. Then follow this session:

ftp> cd dsl/lib/fftpack
ftp> mget *

answer y to each question
ft§> quit
or from netlib.org where it has been accessed 400,000 times.
Good FFT Reference Text
William L. Briggs and Van Emden Henson, The DFT: An Owner’s

Manual for the Discrete Fourier Transform, Society for Indus-
trial and Applied Mathematics, Philadelphia, 1995.
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PROJECTS

Implement the restructured symmetric FFTs in FFTPACK
Implement Bluestein’s FFT.
Implement FFTPACK 5.0
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